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Main goal of this chapter

Theorem (Fundamental theorem of arithmetic)

Every positive integer can be uniquely decomposed as a
product of primes.

Uniqueness is not obvious!
Given a non-prime integer n, we can write n = ab, and
continue factoring.

But if we start with n = a'b’, will we get the same factors in
the end?
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o Z={-,-2,-1,0,1,2,--}.

o N={1,2,3,---}.

In some languages, N ={0,1,2,3,---}.

~+ Better notation: Z;.
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Smallest and largest elements

Proposition

Let S C R be a non-empty, finite subset. Then S has a
smallest element, and a largest element.

Counter-example
Not true for S = R.g = (0, +00).

Let SCN, S#(D. Then S has a smallest element.

Since S # (), there exists sp € S. Let
Sc, ={s€S|s< s}

Then min § = min Sc,, which exists because S is finite. [
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Application: proof by induction

Let P(n) be a property depending on n € N.
If P(1) holds, and if P(n) = P(n+ 1) for all n € N, then
P(n) holds for all n € N.

Suppose not. Then

S ={n e N | P(n) does not hold}

is not empty. Let ng =minS. Then ng # 1, so ng —1 € N.
We have P(no) is false, but P(ng — 1) is true, because
n—1¢San—1<minS. Absurd. O

V.
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Euclidean division in Z

Let a€ Z and b € N. There exist q € 7 and r € Z such that
a=bg+r and 0<r<b.
Moreover, q and r are unique.

Nicolas Mascot Introduction to number theory



Euclidean division in Z

Let a € 7Z and b € N. There exist q € 7 and r € 7 such that
a=bg+r and 0<r<b
Moreover, q and r are unique.

EX|stence WLOG, assume a > 0. Take

g=max{x € Z|bx < a} =max{x € Z, —a<x < a| bx < aj

and r = a— bq. Then bg < a, so r > 0. Besides, if r > b,
then
b 1)=5b b=a—-r+b<
(g+1)=bg+b=a r<0+ a
contradiction with the definition of g.

O
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Euclidean division in Z

Let a € 7Z and b € N. There exist q € 7 and r € 7 such that
a=bg+r and 0<r<b
Moreover, q and r are unique.

Uniqueness: Suppose now a = bg + r = bq' + r’ with
0<r,r' <b. Then

—b<r—r <b
but also
r—r'=(a—bq)—(a—bq)=blqg—q),
whence (divide by b)

-1<g-4¢ <1.
Z
€
Soqg—q =0, whence g=¢ and r =r'. O]
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Divisibility
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Divisibility

For a, b € Z, we say that a | b if there exists k € Z
such that b = ak.

a| biff. bis a multiple of a.

2] 6.

1| x for all x € Z.

x| 1iff. x =+1.

If a0, then a| biff. b/a € Z.
0| x iff. x=0.

x |0 for all x € Z.
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Divisibility of combinations

Let a,b,c € Z. Ifa| b and a | c, then
al(bx+cy)
for all x,y € Z. In particular,

al(b+c) and a|(b-—oc).

a| bso b= ak for some k € Z. Similarly ¢ = al for some
I €Z. So

bx 4+ cy = akx + aly = a(kx + ly).
~——

EZL
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gcd and Icm

Let a,b e Z.

gecd(a, b) = max{d € N | d|a and d|b},

lcm(a, b) = min{m € N | a|m and b|m}.

For a =18 and b = 12, we have
gcd(a, b) = 6, lcm(a, b) = 36.

ged(n,n+ 1) =1 for all n € Z. Indeed, let d € N be such
that d | nand d | (n+ 1); then d | ((n+ 1) — n) = 1.
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The Euclidean algorithm

Let a, b € N. Start by dividing a by b, then iteratively divide
the previous divisor by the previous remainder. The last

nonzero remainder is gcd(a, b).

Take a =23 and b =9. We compute
@ 23=9x2+5.

@ 9=5x1+4.
e5b=4x1+1.
0 4=1x4+0.

~ ged(23,9) = 1.
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The Euclidean algorithm

Lemma

Let a, b € N. Define

Div(a, b) = {d € N | d|a and d|b},
and let a = bq + r be the Euclidean division. Then

Div(a, b) = Div(b, r).

@ C:Ifd|aandd| b, thend|bandd|r=al+ b(—q).
@ D:ifd|bandd|r, thend|a=bg+rlandd]|b.

O
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The Euclidean algorithm

Lemma

Let a, b € N. Define
Div(a, b) = {d € N | d|a and d|b},
and let a = bq + r be the Euclidean division. Then

Div(a, b) = Div(b, r).

Proof of the Euclidean algorithm.

Let z be the last nonzero remainder in the Euclidean
algorithm. Then

Div(a, b) = --- = Div(- - - , z) = Div(z,0) = Div(z),

whence gcd(a, b) = max Div(a, b) = max Div(z) = z. O




Bézout's theorem

Theorem (Bézout)

Let a,b € Z. There exist u,v € Z such that

gcd(a, b) = au + bv.
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Bézout's theorem

Theorem (Bézout)
Let a,b € 7Z. There exist u,v € 7Z such that

gcd(a, b) = au + bv.

Proof.
@ 23=9x2+5.
@ 9=5x1+4.
e5=4x1+1.
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Bézout's theorem

Theorem (Bézout)
Let a,b € 7Z. There exist u,v € 7Z such that

gcd(a, b) = au + bv.

e5=23-9x2.
e 4=9-5x1.
@e1=5—4x1.
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Bézout's theorem

Theorem (Bézout)
Let a,b € 7Z. There exist u,v € 7Z such that

gcd(a, b) = au + bv.

@ 5=23—-9x2.
e4=9-5x1.
@e1=5—-4x1.

~1=h—-4x%x1
=5—-(9-5x1)x1=5%x2-9x1
=(23-9%x2)x2—-9x1=23x2-9x5.
[]
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Bézout's theorem
Theorem (Bézout)

Let a,b € Z. There exist u,v € Z such that

gcd(a, b) = au + bv.

Corollary

Two integers a, b € Z are coprime iff. there exist u,v € Z
such that

au+ bv = 1.
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Bézout's theorem

Theorem (Bézout)

Let a,b € Z. There exist u,v € Z such that

gcd(a, b) = au + bv.

Corollary

Two integers a, b € Z are coprime iff. there exist u,v € Z
such that

au+ bv = 1.

gcd(n,n+ 1) =1 for all n € N, because
nx(=1)+(n+1)x1=1.
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The fundamental theorem of
arithmetic
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Prime numbers

Definition (Prime number)

Let p € N. p is prime if it has exactly two positive divisors. In
other words, this means p # 1 and for all d € N,

d|p<=d=1orp.

An integer n > 2 which is not prime is called composite.

n > 2 is composite iff. there exist a, b € N such
that 1 < a,b < n and ab = n.

If p € N is prime, then for all n € 7Z,

[ 1, ifptn,
o) ={ 5 iehl
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Gauss's lemma

Let a,b,c € Z. If a| bc and if gcd(a, b) =1, then a | c.
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Gauss's lemma

Let a,b,c € Z. If a| bc and if gcd(a, b) =1, then a | c.

Counter-example
6|10 x 3 but 6110, 61 3.
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Gauss's lemma

Let a,b,c € Z. If a| bc and if gcd(a, b) =1, then a | c.

gcd(a, b) =1 so au+ bv =1 for some u,v € Z. Then

a | auc + bev = (au + bv)c = c.
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Gauss's lemma

Let a,b,c € Z. If a| bc and if gcd(a, b) =1, then a | c.

Corollary (Euclid's lemma)

Let p € N be prime, and let b,c € Z. If p | bc, then p | b or
plc.
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Gauss's lemma

Let a,b,c € Z. If a| bc and if gcd(a, b) =1, then a | c.

Counter-example
6|10 x 3 but 6110, 61 3.

Corollary (Euclid's lemma)

Let p € N be prime, and let b,c € Z. If p | bc, then p | b or
plc.
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Gauss's lemma

Let a,b,c € Z. If a| bc and if gcd(a, b) =1, then a | c.

Corollary (Euclid's lemma)

Let p € N be prime, and let b,c € Z. If p | bc, then p | b or
plc.

If p| b, OK. Else, gcd(p, b) = 1; apply Gauss's lemma. O
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The fundamental theorem of arithmetic

Theorem
Every n € N is a product of primes, and this decomposition is
unique (up to re-ordering the factors).

Existence: If nis prime, done. Else, n = ab with 1 < a, b < n;
recurse.

Uniqueness: Suppose
n=pip2---pr=G1G2---gs
where the p; and the g; are prime. Then
pilpip2- pr=qiq2- - Gs;
by applying Euclid’s lemma repeatedly, we get p; | g; for
some j. Since g; is prime, this forces p; = g;. Simplify
by p1 = g; and start over. O]
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Practical factoring
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Factoring integers

Let n € Z~,. If n is composite, there exists prime p < \/n
such that d | n.

As n is composite, n = ab with 2 < a,b < n. If we had
a,b > +/n, then n = ab > ﬁz = n, absurd; So WLOG
a < +/n. Consider a prime divisor of a. O
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Factoring integers

Let n € Z~,. If n is composite, there exists prime p < \/n
such that d | n.

Let n =23. Then \/n < /25 = 5, so the primes < /n are 2
and 3. Since neither divides n, n is prime.
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Factoring integers

Let n € Z~,. If n is composite, there exists prime p < \/n
such that d | n.

Example

Let n =91. For p € {2,3,5}, we have p | 90, so
pln—p|(n—90)=1;

absurd, thus p 1 n.

However 91/7 = 13 € Z, so we have a partial factorisation

n=7x13.

If 7 or 13 were composite, they would have a prime factor

p < V13 < 5; but then p | 7 x 13 = n, absurd. So 7 and 13

are prime, and we have completely factored n.
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Valuations
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p-adic valuation

Definition

Let n € Z, n# 0. Write it as n = £ ][, p/" where a; € Z>,
and the p; are distinct primes.
Define v, (n) = a;.

18 =2 x 32, 50 »»(18) = 1, v3(18) =2, v,(18) = 0 for p > 5.

Nicolas Mascot Introduction to number theory



p-adic valuation

Definition

Let n€ Z, n# 0. Write it as n = £ ][, pi" where a; € Z>,
and the p; are distinct primes.

Define v,,(n) = a;.

Convention: v,(0) = +o0.

Proposition

Let p be prime. Then for all m, n € Z,
o vp(mn) = v,(m) + v,(n),

® v,(m+ n) = min (v,(m), vy(n)).

Exercise! ]
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Valuations vs. divisibility

Given integers m, n,---, we may always write

SN | R |

with the same distinct primes p;, by dllowing some a;, b;, - - -
to be 0.

Lemma

Let m =], p7",n=T1.p" € N, with the p; distinct primes.
Then m | n iff. a; < b; for all i.

6 = 2'3' | 60 = 223'5!.
12 =223y 18 = 232,
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Valuations vs. divisibility

Given integers m, n,---, we may always write

m:prf7 ”:prpi"”

with the same distinct primes p;, by dllowing some a;, b;, - - -
to be 0.

Let m=T][,p",n=1], pf"’ € N, with the p; distinct primes.
Then m | n iff. a; < b; for all i.

Exercisel
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Valuations vs. gcd and lcm

Let m=T][,p",n=1], p? € N, with the p; distinct primes.

Then gcd(m, n) H min(@:5) - \em(m, n) H max{ai,i)
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Valuations vs. gcd and lcm

Let m=T[,p/",n=1I. pf”' € N, with the p; distinct primes.

Then gcd(m, n) H min(a;,b) lcm(m, n) H max(ai,bi)

Corollary

The common divisors of m and n are exactly the divisors of
ged(m, n).

The common multiples of m and n are exactly the multiples of
lcm(m, n).
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Valuations vs. gcd and lcm

Theorem

Let m=T][,p",n=1], p? € N, with the p; distinct primes.

Then gcd(m, n) H i il 26 . lem(m, n) H max(a;,b;)
Corollary
gcd(m, n)lem(m,n) =mn ~ lecm(m,n) = %

<

We always have min(a, b) + max(a, b) = a+ b.
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Multiplicative functions
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Multiplicative functions

Let f : N — C be a function.
e f is strongly multiplicative if f(mn) = f(m)f(n) for
all m,n e N.
o f is (weakly) multiplicative if f(mn) = f(m)f(n) for
all m,n € N such that gcd(m, n) = 1.

We will see examples later!
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Sum of geometric progressions

Lemma

Let x € C, x £ 1; and let n € N. Then

x"t1 1

L+ x+x2+xX>+ -+ x"=
x—1

If x=1,whatisl+x+x2+x3+---+x"7?

n+1_1

And what is lim ———7
x—1 X — ]_
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Sums of powers of divisors

Forn e N and k € C, let oy(n de

d>0

0 0,(12) =12 4+ 22 + 3% + 4% + 62 + 122 = 210.

@ o01(n) = sum of positive divisors of n.

@ 0o(n) = number of positive divisors of n.
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Sums of powers of divisors

Forn € N and k € C, let oy(n) = de.
oo

Let n =[], p/" € N, with the p; distinct primes. Then

ao(n) = H(a,- +1), and

1

a;+1) . 1

K(
O'k(n) = lepk——]_ for k 7£O

i
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Sums of powers of divisors

The positive divisors of n = []\_, p" are the [[/_, p7" for all
combinations of the b; such that 0 < b; < a; for all J.

Thus for each i, there are a; + 1 choices for b;, hence the
formula for ao(n). O
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Sums of powers of divisors

Similarly, for k # 0, the k-th power of these divisors are
k
o (1) I
Z pkb1 Kby kb,

0<hi<a1
0<b',<a,
kb1 kb
= Z > Z pi P
=0 b=0 b=

() (pr”) &

r k(a‘+1) 1

S 1 PITARY | (A .

i=1 b;=0 i=1 p,—l
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The oy are multiplicative

The o are weakly multiplicative.

Let m,n € N be coprime. Then m =[] p", n =1]] q;)j with
the p; distinct from the g;. O
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The Diophantine equation
ax + by = c
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A family of Diophantine equations

Fix integers a, b, c € Z. We want to solve

ax+by=c, x,y€l.
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A family of Diophantine equations

Fix integers a, b, c € Z. We want to solve

ax+by=c, x,y€l.

The equation

6x + 10y = 2021

has no solutions such that x,y € Z.
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A family of Diophantine equations

Fix integers a, b, c € Z. We want to solve

ax+by=c, x,y€l.

Lemma (Strong Bézout)

Let a, b € Z. The integers of the form ax + by (x,y € Z) are
exactly the multiples of gcd(a, b).

Let g = gcd(a, b). Then g | aand g | b, so g | (ax + by) for
all x,y € Z.

Conversely, by Bézout, we can find u, v € Z such that

au + bv = g; then for all k € Z,

a(ku) + b(kv) = kg. =

<
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A family of Diophantine equations

Let a, b € Z. The integers of the form ax + by (x,y € Z) are
exactly the multiples of gcd(a, b).

Let g = gcd(a, b). Then g | aand g | b, so g | (ax + by) for
all x,y € Z.

Conversely, by Bézout, we can find u, v € Z such that

au + bv = g; then for all k € Z,

a(ku) + b(kv) = kg. ]

Corollary

The Diophantine equation ax + by = c has solutions iff.
ged(a, b) | c.
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Reduction to the case ged(a, b) = 1

Let a,b € Z not both zero, and let g = gcd(a, b). Then the
integers 8 = a/g and b’ = b/g are coprime.

By Bézout, we can find u, v € Z such that au+ bv = g. Then
du+bv=1,sogecdd,b)=1. O

To solve ax + by = ¢ with ¢ a multiple of g = gcd(a, b),
dividing by g yields
ax+by=<"

where 8 = a/g, b =b/g, ' =c/g
~» WLOG, we can assume gcd(a, b) = 1.
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Solving the case gcd(a, b) =1

Let a, b, c € Z be such that ged(a, b) = 1.
Let xo, yo € Z such that axq + byy = c.
Suppose x,y € 7Z also satisfy ax + by = c. Then

axg + bvyg =c=ax+ by ~~ a(Xo —X) = b(y—YO)-

Gauss

So a| b(y — w) d(wb) @ | (¥ — ¥), whence y = yo + ka for
ged(a,b)=
some k € Z.
Similarly, b | a(xp — x) s p | (xo — x), whence
ged(a,b)=1

X = Xg + Ib for some | € Z.

Besides, a(xg — x) = b(y — yo) implies | = —k.
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Solving the case gcd(a, b) =1

Proposition

Let a, b, c € Z be such that gcd(a, b) = 1. Then ax + by = ¢
has infinitely many solutions. If xq, yo is a solution, then the
general solutions are x = xo — kb, y = yo + ka (k € Z).
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Solving the case gcd(a, b) =1

Let a, b, c € Z be such that gcd(a, b) = 1. Then ax + by = ¢
has infinitely many solutions. If xq, yo is a solution, then the

general solutions are x = xo — kb, y = yo + ka (k € Z).

Let a, b, c € Z. The Diophantine equation ax + by = c has
infinitely many solutions if gcd(a, b) | ¢, and none if
ged(a, b) 1 c.

Nicolas Mascot Introduction to number theory



Solving the case gcd(a, b) =1

Example
We want to solve 6x + 10y = 2020.

g = gcd(6,10) =2 | 2020 ~~ infinitely many solutions.
Simplify by g: 3x 4+ 5y = 1010.

Particular solution: Euclidean algorithm gives 3u + 5v =1 for
u=2,v=—1~ can take x = 2020, yp, = —1010.
Or directly spot xo = 0, yp = 202.

Either way, the solutions are
X=Xp— b5k, y=w+3k, kecZ.
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Complements on primes
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Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

Proof.
Suppose not, and let py,--- , p, be all the primes. Consider

N=p--p+1,

and let p | N be a prime divisor of N. Then p is one of the p;,
SO
plpi-pr,

thus
pl(N—=pi---p)=1,
absurd. 0
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Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

Example

p1 = 3 is prime.

Prime divisor of 3+ 1 =4 =2 X 2 ~» new prime p, = 2.
Prime divisor of 3 x 2+ 1 =7 ~» new prime p3 = 7.

Prime divisor of 3 x 2 X 74+ 1 = 43 ~» new prime p; = 43.
Prime divisor of 3 x 2 x 7 x 434+ 1 = 13 x 139 ~~ new prime
ps = 13 (or 139)...
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Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

p1 = 3 is prime.

Prime divisor of 3+ 1 =4 =2 X 2 ~» new prime p, = 2.
Prime divisor of 3 x 2+ 1 =7 ~» new prime p3 = 7.

Prime divisor of 3 x 2 X 74+ 1 = 43 ~» new prime p; = 43.
Prime divisor of 3 x 2 x 7 x 434+ 1 = 13 x 139 ~~ new prime
ps = 13 (or 139)...

Theorem: There are infinitely many composite numbers.
Proof: Suppose not. Multiply all the composite numbers.
Do not add 1!

”
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The prime number theorem (NON-EXAMINABLE)

For x € Ry, let w(x) = #{p prime | p < x},

for instance m(8.2) = 4. Then, as x — +o0,
X
m(x) ~ ogx’
It follows that the n-th prime is ~ nlogn as n — +o0.

For x = 10'°, we have

10

10
7(10'°) = 455052511 whereas ———— = 434294481.9032.. ..
log 1010

The billionth prime is
P1o> = 22801763489 whereas 10° log 10° = 20723265836.94 . . .
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The prime number theorem (NON-EXAMINABLE)

A better estimate is
X
def dt

7(x) ~ Li(x) = | Togt

The Riemann hypothesis about the complex zeroes of

def v= 1 Fra 1
((s)=2 <= I1 T

n=1 p prime

m(x) — Li(x) = O(v/x log x).
Without it, we can still prove
7(x) — Li(x) = O(x/eV'*8X) for some ¢ > 0.

implies
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