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Main goal of this chapter

Theorem (Fundamental theorem of arithmetic)

Every positive integer can be uniquely decomposed as a
product of primes.

Remark

Uniqueness is not obvious!
Given a non-prime integer n, we can write n = ab, and
continue factoring.
But if we start with n = a′b′, will we get the same factors in
the end?

Nicolas Mascot Introduction to number theory



Notation

Z = {· · · ,−2,−1, 0, 1, 2, · · · }.

N = {1, 2, 3, · · · }.

Remark

In some languages, N = {0, 1, 2, 3, · · · }.
 Better notation: Z>1.

Nicolas Mascot Introduction to number theory



Smallest and largest elements

Proposition

Let S ⊆ R be a non-empty, finite subset. Then S has a
smallest element, and a largest element.

Counter-example

Not true for S = R>0 = (0,+∞).

Corollary

Let S ⊆ N, S 6= ∅. Then S has a smallest element.

Proof.

Since S 6= ∅, there exists s0 ∈ S . Let

S6s0 = {s ∈ S | s 6 s0}.
Then min S = min S6s0 , which exists because S6s0 is finite.

Nicolas Mascot Introduction to number theory



Application: proof by induction

Theorem (Proof by induction)

Let P(n) be a property depending on n ∈ N.
If P(1) holds, and if P(n) =⇒ P(n + 1) for all n ∈ N, then
P(n) holds for all n ∈ N.

Proof.

Suppose not. Then

S = {n ∈ N | P(n) does not hold}

is not empty. Let n0 = min S . Then n0 6= 1, so n0 − 1 ∈ N.
We have P(n0) is false, but P(n0 − 1) is true, because
n0 − 1 6∈ S a n0 − 1 < min S . Absurd.
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Euclidean division in Z

Theorem

Let a ∈ Z and b ∈ N. There exist q ∈ Z and r ∈ Z such that
a = bq + r and 0 6 r < b.

Moreover, q and r are unique.

Proof.
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Euclidean division in Z
Theorem

Let a ∈ Z and b ∈ N. There exist q ∈ Z and r ∈ Z such that
a = bq + r and 0 6 r < b.

Moreover, q and r are unique.

Proof.

Existence: WLOG, assume a > 0. Take

q = max{x ∈ Z | bx 6 a} = max{x ∈ Z, −a 6 x 6 a | bx 6 a}

and r = a − bq. Then bq 6 a, so r > 0. Besides, if r > b,
then

b(q + 1) = bq + b = a−r + b︸ ︷︷ ︸
60

6 a,

contradiction with the definition of q.
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Euclidean division in Z
Theorem

Let a ∈ Z and b ∈ N. There exist q ∈ Z and r ∈ Z such that
a = bq + r and 0 6 r < b.

Moreover, q and r are unique.

Proof.

Uniqueness: Suppose now a = bq + r = bq′ + r ′ with
0 6 r , r ′ < b. Then

−b < r − r ′ < b

but also
r − r ′ = (a − bq)− (a − bq′) = b(q − q′),

whence (divide by b)
−1 < q − q′︸ ︷︷ ︸

∈Z

< 1.

So q − q′ = 0, whence q = q′ and r = r ′.
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Divisibility
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Divisibility

Definition (Divisibility)

For a, b ∈ Z, we say that a | b if there exists k ∈ Z
such that b = ak .

Remark

a | b iff. b is a multiple of a.

Example

−2 | 6.

1 | x for all x ∈ Z.

x | 1 iff. x = ±1.

If a 6= 0, then a | b iff. b/a ∈ Z.

0 | x iff. x = 0.

x | 0 for all x ∈ Z.
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Divisibility of combinations

Proposition

Let a, b, c ∈ Z. If a | b and a | c , then

a | (bx + cy)

for all x , y ∈ Z. In particular,

a | (b + c) and a | (b − c).

Proof.

a | b so b = ak for some k ∈ Z. Similarly c = al for some
l ∈ Z. So

bx + cy = akx + aly = a(kx + ly︸ ︷︷ ︸
∈Z

).
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gcd and lcm

Definition

Let a, b ∈ Z.

gcd(a, b) = max{d ∈ N | d |a and d |b},

lcm(a, b) = min{m ∈ N | a|m and b|m}.

Example

For a = 18 and b = 12, we have

gcd(a, b) = 6, lcm(a, b) = 36.

Example

gcd(n, n + 1) = 1 for all n ∈ Z. Indeed, let d ∈ N be such
that d | n and d | (n + 1); then d |

(
(n + 1)− n

)
= 1.
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The Euclidean algorithm

Theorem

Let a, b ∈ N. Start by dividing a by b, then iteratively divide
the previous divisor by the previous remainder. The last
nonzero remainder is gcd(a, b).

Example

Take a = 23 and b = 9. We compute

23 = 9× 2 + 5.

9 = 5× 1 + 4.

5 = 4× 1 + 1.

4 = 1× 4 + 0.

 gcd(23, 9) = 1.
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The Euclidean algorithm

Lemma

Let a, b ∈ N. Define

Div(a, b) = {d ∈ N | d |a and d |b},

and let a = bq + r be the Euclidean division. Then

Div(a, b) = Div(b, r).

Proof.

⊆: If d | a and d | b, then d | b and d | r = a1 + b(−q).

⊇: If d | b and d | r , then d | a = bq + r1 and d | b.
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The Euclidean algorithm

Lemma

Let a, b ∈ N. Define

Div(a, b) = {d ∈ N | d |a and d |b},

and let a = bq + r be the Euclidean division. Then

Div(a, b) = Div(b, r).

Proof of the Euclidean algorithm.

Let z be the last nonzero remainder in the Euclidean
algorithm. Then

Div(a, b) = · · · = Div(· · · , z) = Div(z , 0) = Div(z),

whence gcd(a, b) = max Div(a, b) = max Div(z) = z .
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Bézout’s theorem

Theorem (Bézout)

Let a, b ∈ Z. There exist u, v ∈ Z such that

gcd(a, b) = au + bv .

Corollary

Two integers a, b ∈ Z are coprime iff. there exist u, v ∈ Z
such that

au + bv = 1.

Example

gcd(n, n + 1) = 1 for all n ∈ N, because
n × (−1) + (n + 1)× 1 = 1.
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Bézout’s theorem

Theorem (Bézout)

Let a, b ∈ Z. There exist u, v ∈ Z such that

gcd(a, b) = au + bv .

Proof.

23 = 9× 2 + 5.

9 = 5× 1 + 4.

5 = 4× 1 + 1.

 1 = 5− 4× 1

= 5− (9− 5× 1)× 1 = 5× 2− 9× 1

= (23− 9× 2)× 2− 9× 1 = 23× 2− 9× 5.

Corollary
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such that
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Bézout’s theorem

Theorem (Bézout)
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The fundamental theorem of
arithmetic
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Prime numbers

Definition (Prime number)

Let p ∈ N. p is prime if it has exactly two positive divisors. In
other words, this means p 6= 1 and for all d ∈ N,

d | p ⇐⇒ d = 1 or p.

An integer n > 2 which is not prime is called composite.

Remark

n > 2 is composite iff. there exist a, b ∈ N such
that 1 < a, b < n and ab = n.

Remark

If p ∈ N is prime, then for all n ∈ Z,

gcd(p, n) =

{
1, if p - n,
p, if p | n.
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Gauss’s lemma

Lemma (Gauss)

Let a, b, c ∈ Z. If a | bc and if gcd(a, b) = 1, then a | c .

Corollary (Euclid’s lemma)

Let p ∈ N be prime, and let b, c ∈ Z. If p | bc , then p | b or
p | c .

Proof.

If p | b, OK. Else, gcd(p, b) = 1; apply Gauss’s lemma.
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Gauss’s lemma

Lemma (Gauss)

Let a, b, c ∈ Z. If a | bc and if gcd(a, b) = 1, then a | c .

Counter-example

6 | 10× 3 but 6 - 10, 6 - 3.

Corollary (Euclid’s lemma)

Let p ∈ N be prime, and let b, c ∈ Z. If p | bc , then p | b or
p | c .

Proof.

If p | b, OK. Else, gcd(p, b) = 1; apply Gauss’s lemma.
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Gauss’s lemma

Lemma (Gauss)

Let a, b, c ∈ Z. If a | bc and if gcd(a, b) = 1, then a | c .

Proof.
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The fundamental theorem of arithmetic

Theorem

Every n ∈ N is a product of primes, and this decomposition is
unique (up to re-ordering the factors).

Proof.

Existence: If n is prime, done. Else, n = ab with 1 < a, b < n;
recurse.
Uniqueness: Suppose

n = p1p2 · · · pr = q1q2 · · · qs
where the pi and the qj are prime. Then

p1 | p1p2 · · · pr = q1q2 · · · qs ;
by applying Euclid’s lemma repeatedly, we get p1 | qj for
some j . Since qj is prime, this forces p1 = qj . Simplify
by p1 = qj and start over.
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Practical factoring
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Factoring integers

Lemma

Let n ∈ Z>2. If n is composite, there exists prime p 6
√
n

such that d | n.

Proof.

As n is composite, n = ab with 2 6 a, b < n. If we had
a, b >

√
n, then n = ab >

√
n
2

= n, absurd; So WLOG
a 6
√
n. Consider a prime divisor of a.
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Factoring integers

Lemma

Let n ∈ Z>2. If n is composite, there exists prime p 6
√
n

such that d | n.

Example

Let n = 23. Then
√
n <
√

25 = 5, so the primes 6
√
n are 2

and 3. Since neither divides n, n is prime.
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Factoring integers

Lemma

Let n ∈ Z>2. If n is composite, there exists prime p 6
√
n

such that d | n.

Example

Let n = 91. For p ∈ {2, 3, 5}, we have p | 90, so
p | n =⇒ p | (n − 90) = 1;

absurd, thus p - n.
However 91/7 = 13 ∈ Z, so we have a partial factorisation

n = 7× 13.

If 7 or 13 were composite, they would have a prime factor
p 6
√

13 6 5; but then p | 7× 13 = n, absurd. So 7 and 13
are prime, and we have completely factored n.
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Valuations
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p-adic valuation

Definition

Let n ∈ Z, n 6= 0. Write it as n = ±
∏

i p
ai
i where ai ∈ Z>0

and the pi are distinct primes.
Define vpi (n) = ai .

Example

18 = 21× 32, so v2(18) = 1, v3(18) = 2, vp(18) = 0 for p > 5.
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p-adic valuation

Definition

Let n ∈ Z, n 6= 0. Write it as n = ±
∏

i p
ai
i where ai ∈ Z>0

and the pi are distinct primes.
Define vpi (n) = ai .

Convention: vp(0) = +∞.

Proposition

Let p be prime. Then for all m, n ∈ Z,

vp(mn) = vp(m) + vp(n),

vp(m + n) > min
(
vp(m), vp(n)

)
.

Proof.

Exercise!
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Valuations vs. divisibility

Remark

Given integers m, n, · · · , we may always write
m =

∏
i

paii , n =
∏
i

pbii , · · ·
with the same distinct primes pi , by allowing some ai , bi , · · ·
to be 0.

Lemma

Let m =
∏

i p
ai
i , n =

∏
i p

bi
i ∈ N, with the pi distinct primes.

Then m | n iff. ai 6 bi for all i .

Example

6 = 2131 | 60 = 223151.

12 = 2231 - 18 = 2132.
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Valuations vs. divisibility

Remark
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Valuations vs. gcd and lcm

Theorem

Let m =
∏

i p
ai
i , n =

∏
i p

bi
i ∈ N, with the pi distinct primes.

Then gcd(m, n) =
∏
i

p
min(ai ,bi )
i , lcm(m, n) =

∏
i

p
max(ai ,bi )
i .

Corollary

gcd(m, n) lcm(m, n) = mn  lcm(m, n) =
mn

gcd(m, n)
.

Proof.

We always have min(a, b) + max(a, b) = a + b.
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Valuations vs. gcd and lcm

Theorem
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∏
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i ∈ N, with the pi distinct primes.
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∏
i

p
min(ai ,bi )
i , lcm(m, n) =

∏
i

p
max(ai ,bi )
i .

Corollary

The common divisors of m and n are exactly the divisors of
gcd(m, n).
The common multiples of m and n are exactly the multiples of
lcm(m, n).
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Multiplicative functions
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Multiplicative functions

Definition

Let f : N −→ C be a function.

f is strongly multiplicative if f (mn) = f (m)f (n) for
all m, n ∈ N.

f is (weakly) multiplicative if f (mn) = f (m)f (n) for
all m, n ∈ N such that gcd(m, n) = 1.

We will see examples later!
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Sum of geometric progressions

Lemma

Let x ∈ C, x 6= 1; and let n ∈ N. Then

1 + x + x2 + x3 + · · ·+ xn =
xn+1 − 1

x − 1
.

Remark

If x = 1, what is 1 + x + x2 + x3 + · · ·+ xn ?

And what is lim
x→1

xn+1 − 1

x − 1
?
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Sums of powers of divisors

Definition

For n ∈ N and k ∈ C, let σk(n) =
∑
d |n
d>0

dk .

Example

σ2(12) = 12 + 22 + 32 + 42 + 62 + 122 = 210.

σ1(n) = sum of positive divisors of n.

σ0(n) = number of positive divisors of n.
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Sums of powers of divisors

Definition

For n ∈ N and k ∈ C, let σk(n) =
∑
d |n
d>0

dk .

Theorem

Let n =
∏

i p
ai
i ∈ N, with the pi distinct primes. Then

σ0(n) =
∏
i

(ai + 1), and

σk(n) =
∏
i

p
k(ai+1)
i − 1

pki − 1
for k 6= 0.
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Sums of powers of divisors

Proof.

The positive divisors of n =
∏r

i=1 p
ai
i are the

∏r
i=1 p

bi
i for all

combinations of the bi such that 0 6 bi 6 ai for all i .
Thus for each i , there are ai + 1 choices for bi , hence the
formula for σ0(n).
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Sums of powers of divisors

Proof.

Similarly, for k 6= 0, the k-th power of these divisors are

the
(∏

i p
bi
i

)k
=
∏r

i=1 p
kbi
i , so

σk(n) =
∑

06b16a1
:

06br6ar

pkb11 pkb22 · · · pkbrr

=
a1∑

b1=0

a2∑
b2=0

· · ·
ar∑

br=0

pkb11 pkb22 · · · pkbrr

=

(
a1∑

b1=0

pkb11

)(
a2∑

b2=0

pkb22

)
· · ·

(
ar∑

br=0

pkbrr

)

=
r∏

i=1

ai∑
bi=0

pkbii =
r∏

i=1

p
k(ai+1)
i − 1

pki − 1
.
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The σk are multiplicative

Corollary

The σk are weakly multiplicative.

Proof.

Let m, n ∈ N be coprime. Then m =
∏

paii , n =
∏

q
bj
j with

the pi distinct from the qj .
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The Diophantine equation
ax + by = c
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A family of Diophantine equations

Fix integers a, b, c ∈ Z. We want to solve

ax + by = c , x , y ∈ Z.

Lemma (Strong Bézout)

Let a, b ∈ Z. The integers of the form ax + by (x , y ∈ Z) are
exactly the multiples of gcd(a, b).

Proof.

Let g = gcd(a, b). Then g | a and g | b, so g | (ax + by) for
all x , y ∈ Z.
Conversely, by Bézout, we can find u, v ∈ Z such that
au + bv = g ; then for all k ∈ Z,

a(ku) + b(kv) = kg .

Corollary

The Diophantine equation ax + by = c has solutions iff.
gcd(a, b) | c .
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A family of Diophantine equations

Fix integers a, b, c ∈ Z. We want to solve

ax + by = c , x , y ∈ Z.

Example

The equation
6x + 10y = 2021

has no solutions such that x , y ∈ Z.
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exactly the multiples of gcd(a, b).

Proof.

Let g = gcd(a, b). Then g | a and g | b, so g | (ax + by) for
all x , y ∈ Z.
Conversely, by Bézout, we can find u, v ∈ Z such that
au + bv = g ; then for all k ∈ Z,

a(ku) + b(kv) = kg .

Corollary

The Diophantine equation ax + by = c has solutions iff.
gcd(a, b) | c .
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Reduction to the case gcd(a, b) = 1

Lemma

Let a, b ∈ Z not both zero, and let g = gcd(a, b). Then the
integers a′ = a/g and b′ = b/g are coprime.

Proof.

By Bézout, we can find u, v ∈ Z such that au + bv = g . Then
a′u + b′v = 1, so gcd(a′, b′) = 1.

To solve ax + by = c with c a multiple of g = gcd(a, b),
dividing by g yields

a′x + b′y = c ′

where a′ = a/g , b′ = b/g , c ′ = c/g

 WLOG, we can assume gcd(a, b) = 1.
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Solving the case gcd(a, b) = 1

Let a, b, c ∈ Z be such that gcd(a, b) = 1.

Let x0, y0 ∈ Z such that ax0 + by0 = c .

Suppose x , y ∈ Z also satisfy ax + by = c . Then

ax0 + bvy0 = c = ax + by  a(x0 − x) = b(y − y0).

So a | b(y − y0)
Gauss
 

gcd(a,b)=1
a | (y − y0), whence y = y0 + ka for

some k ∈ Z.

Similarly, b | a(x0 − x)
Gauss
 

gcd(a,b)=1
b | (x0 − x), whence

x = x0 + lb for some l ∈ Z.

Besides, a(x0 − x) = b(y − y0) implies l = −k .

Nicolas Mascot Introduction to number theory



Solving the case gcd(a, b) = 1

Proposition

Let a, b, c ∈ Z be such that gcd(a, b) = 1. Then ax + by = c
has infinitely many solutions. If x0, y0 is a solution, then the
general solutions are x = x0 − kb, y = y0 + ka (k ∈ Z).

Theorem

Let a, b, c ∈ Z. The Diophantine equation ax + by = c has
infinitely many solutions if gcd(a, b) | c , and none if
gcd(a, b) - c .
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Solving the case gcd(a, b) = 1

Example

We want to solve 6x + 10y = 2020.

g = gcd(6, 10) = 2 | 2020  infinitely many solutions.

Simplify by g : 3x + 5y = 1010.

Particular solution: Euclidean algorithm gives 3u + 5v = 1 for
u = 2, v = −1  can take x0 = 2020, y0 = −1010.
Or directly spot x0 = 0, y0 = 202.

Either way, the solutions are
x = x0 − 5k , y = y0 + 3k , k ∈ Z.
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Complements on primes
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Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

Proof.

Suppose not, and let p1, · · · , pr be all the primes. Consider

N = p1 · · · pr + 1,

and let p | N be a prime divisor of N . Then p is one of the pi ,
so

p | p1 · · · pr ,

thus
p | (N − p1 · · · pr ) = 1,

absurd.

Joke

Theorem: There are infinitely many composite numbers.
Proof: Suppose not. Multiply all the composite numbers.

Do not add 1!
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Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

Example

p1 = 3 is prime.
Prime divisor of 3 + 1 = 4 = 2× 2  new prime p2 = 2.
Prime divisor of 3× 2 + 1 = 7  new prime p3 = 7.
Prime divisor of 3× 2× 7 + 1 = 43  new prime p4 = 43.
Prime divisor of 3× 2× 7× 43 + 1 = 13× 139  new prime
p5 = 13 (or 139)...

Joke

Theorem: There are infinitely many composite numbers.
Proof: Suppose not. Multiply all the composite numbers.

Do not add 1!
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The prime number theorem (NON-EXAMINABLE)

Theorem (1896)

For x ∈ R>0, let π(x) = #{p prime | p 6 x};
for instance π(8.2) = 4. Then, as x → +∞,

π(x) ∼ x

log x
.

It follows that the n-th prime is ∼ n log n as n→ +∞.

Example

For x = 1010, we have

π(1010) = 455052511 whereas
1010

log 1010
= 434294481.9032 . . .

The billionth prime is

p109 = 22801763489 whereas 109 log 109 = 20723265836.94 . . .
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The prime number theorem (NON-EXAMINABLE)

Remark

A better estimate is

π(x) ∼ Li(x)
def
=

∫ x

2

dt

log t
.

The Riemann hypothesis about the complex zeroes of

ζ(s)
def
=

+∞∑
n=1

1

ns
FTA
=

∏
p prime

1

1− p−s

implies
π(x)− Li(x) = O(

√
x log x).

Without it, we can still prove

π(x)− Li(x) = O(x/ec
√
log x) for some c > 0.

Nicolas Mascot Introduction to number theory


