MAU23101

Introduction to number theory 1 - Divisibility and factorisation

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2020–2021 Version: October 2, 2020

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Theorem (Fundamental theorem of arithmetic)

Every positive integer can be <u>uniquely</u> decomposed as a product of primes.

Remark

Uniqueness is <u>not</u> obvious! Given a non-prime integer n, we can write n = ab, and continue factoring. But if we start with n = a'b', will we get the same factors in the end?

•
$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}.$$

•
$$\mathbb{N} = \{1, 2, 3, \cdots \}.$$

Remark

In some languages,
$$\mathbb{N} = \{0, 1, 2, 3, \cdots\}.$$

 \rightsquigarrow Better notation: $\mathbb{Z}_{\geq 1}$.

Smallest and largest elements

Proposition

Let $S \subseteq \mathbb{R}$ be a non-empty, <u>finite</u> subset. Then S has a smallest element, and a largest element.

Counter-example

Not true for $S = \mathbb{R}_{>0} = (0, +\infty)$.

Corollary

Let $S \subseteq \mathbb{N}$, $S \neq \emptyset$. Then S has a smallest element.

Proof.

Since $S \neq \emptyset$, there exists $s_0 \in S$. Let

$$S_{\leqslant s_0} = \{s \in S \mid s \leqslant s_0\}.$$

Then min $S = \min S_{\leq s_0}$, which exists because $S_{\leq s_0}$ is finite.

Theorem (Proof by induction)

Let P(n) be a property depending on $n \in \mathbb{N}$. If P(1) holds, and if $P(n) \Longrightarrow P(n+1)$ for all $n \in \mathbb{N}$, then P(n) holds for all $n \in \mathbb{N}$.

Proof.

Suppose not. Then

$$S = \{n \in \mathbb{N} \mid P(n) \text{ does not hold}\}$$

is not empty. Let $n_0 = \min S$. Then $n_0 \neq 1$, so $n_0 - 1 \in \mathbb{N}$. We have $P(n_0)$ is false, but $P(n_0 - 1)$ is true, because $n_0 - 1 \notin S$ a $n_0 - 1 < \min S$. Absurd.

Theorem

Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. There exist $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ such that a = bq + r and $0 \leq r < b$. Moreover, q and r are unique.

Euclidean division in $\mathbb Z$

Theorem

Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. There exist $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ such that a = bq + r and $0 \leq r < b$.

Moreover, q and r are unique.

Proof.

Existence: WLOG, assume $a \ge 0$. Take

$$q = \max\{x \in \mathbb{Z} \mid bx \leqslant a\} = \max\{x \in \mathbb{Z}, \ -a \leqslant x \leqslant a \mid bx \leqslant a\}$$

and r = a - bq. Then $bq \leq a$, so $r \geq 0$. Besides, if $r \geq b$, then

$$b(q+1) = bq + b = a \underbrace{-r+b}_{\leqslant 0} \leqslant a,$$

contradiction with the definition of q.

Euclidean division in $\mathbb Z$

Theorem

Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. There exist $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ such that a = bq + r and $0 \leq r < b$.

Moreover, q and r are unique.

Proof.

Uniqueness: Suppose now a = bq + r = bq' + r' with $0 \le r, r' < b$. Then

$$-b < r - r' < b$$

but also

$$r-r'=(a-bq)-(a-bq')=b(q-q')$$

whence (divide by b)

$$-1 < \underbrace{q-q'}_{\in \mathbb{Z}} < 1.$$

So q - q' = 0, whence q = q' and r = r'.

Divisibility

Definition (Divisibility)

For $a, b \in \mathbb{Z}$, we say that $a \mid b$ if there exists $k \in \mathbb{Z}$ such that b = ak.

Remark

 $a \mid b$ iff. b is a multiple of a.

Example

• $1 \mid x$ for all $x \in \mathbb{Z}$.

•
$$x \mid 1$$
 iff. $x = \pm 1$.

• If
$$a \neq 0$$
, then $a \mid b$ iff. $b/a \in \mathbb{Z}$.

•
$$0 \mid x \text{ iff. } x = 0.$$

•
$$x \mid 0$$
 for all $x \in \mathbb{Z}$.

Divisibility of combinations

Proposition

Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then

 $a \mid (bx + cy)$

for all $x, y \in \mathbb{Z}$. In particular,

$$a \mid (b+c)$$
 and $a \mid (b-c)$.

Proof.

 $a \mid b$ so b = ak for some $k \in \mathbb{Z}$. Similarly c = al for some $l \in \mathbb{Z}$. So

$$bx + cy = akx + aly = a(\underbrace{kx + ly}_{c \mathbb{Z}}).$$

gcd and lcm

Definition

Let $a, b \in \mathbb{Z}$.

$$gcd(a, b) = max\{d \in \mathbb{N} \mid d|a \text{ and } d|b\},\$$

 $\operatorname{lcm}(a, b) = \min\{m \in \mathbb{N} \mid a \mid m \text{ and } b \mid m\}.$

Example

For
$$a = 18$$
 and $b = 12$, we have

$$gcd(a, b) = 6$$
, $lcm(a, b) = 36$.

Example

gcd(n, n + 1) = 1 for all $n \in \mathbb{Z}$. Indeed, let $d \in \mathbb{N}$ be such that $d \mid n$ and $d \mid (n + 1)$; then $d \mid ((n + 1) - n) = 1$.

The Euclidean algorithm

Theorem

Let $a, b \in \mathbb{N}$. Start by dividing a by b, then iteratively divide the previous divisor by the previous remainder. The last nonzero remainder is gcd(a, b).

Example

Take
$$a = 23$$
 and $b = 9$. We compute

•
$$23 = 9 \times 2 + 5$$
.

•
$$9 = 5 \times 1 + 4$$
.

•
$$5 = 4 \times 1 + 1$$
.

•
$$4 = 1 \times 4 + 0$$

 \rightsquigarrow gcd(23,9) = 1.

The Euclidean algorithm

Lemma

Let $a, b \in \mathbb{N}$. Define

$$\mathsf{Div}(a,b) = \{ d \in \mathbb{N} \mid d | a \text{ and } d | b \},\$$

and let a = bq + r be the Euclidean division. Then

$$\operatorname{Div}(a, b) = \operatorname{Div}(b, r).$$

Proof.

• \subseteq : If $d \mid a$ and $d \mid b$, then $d \mid b$ and $d \mid r = a1 + b(-q)$. • \supseteq : If $d \mid b$ and $d \mid r$, then $d \mid a = bq + r1$ and $d \mid b$.

The Euclidean algorithm

Lemma

Let $a, b \in \mathbb{N}$. Define

$$\mathsf{Div}(a,b) = \{ d \in \mathbb{N} \mid d | a \text{ and } d | b \},$$

and let a = bq + r be the Euclidean division. Then

$$\operatorname{Div}(a, b) = \operatorname{Div}(b, r).$$

Proof of the Euclidean algorithm.

Let \boldsymbol{z} be the last nonzero remainder in the Euclidean algorithm. Then

$$\operatorname{Div}(a, b) = \cdots = \operatorname{Div}(\cdots, z) = \operatorname{Div}(z, 0) = \operatorname{Div}(z)$$

whence gcd(a, b) = max Div(a, b) = max Div(z) = z.

Theorem (Bézout)

Let $a, b \in \mathbb{Z}$. There exist $u, v \in \mathbb{Z}$ such that

gcd(a, b) = au + bv.

Theorem (Bézout)

Let $a, b \in \mathbb{Z}$. There exist $u, v \in \mathbb{Z}$ such that

$$gcd(a, b) = au + bv.$$

Proof.

- $23 = 9 \times 2 + 5$.
- $9 = 5 \times 1 + 4$.
- $5 = 4 \times 1 + 1$.

Theorem (Bézout)

Let $a, b \in \mathbb{Z}$. There exist $u, v \in \mathbb{Z}$ such that

$$gcd(a, b) = au + bv.$$

Proof.

- $5 = 23 9 \times 2$.
- $4 = 9 5 \times 1$.
- $1 = 5 4 \times 1$.

Theorem (Bézout)

Let $a, b \in \mathbb{Z}$. There exist $u, v \in \mathbb{Z}$ such that

$$gcd(a, b) = au + bv.$$

Proof.

•
$$5 = 23 - 9 \times 2$$
.
• $4 = 9 - 5 \times 1$.
• $1 = 5 - 4 \times 1$.
 $\Rightarrow 1 = 5 - 4 \times 1$
 $= 5 - (9 - 5 \times 1) \times 1 = 5 \times 2 - 9 \times 1$
 $= (23 - 9 \times 2) \times 2 - 9 \times 1 = 23 \times 2 - 9 \times 5$.

Theorem (Bézout)

Let $a, b \in \mathbb{Z}$. There exist $u, v \in \mathbb{Z}$ such that

$$gcd(a, b) = au + bv.$$

Corollary

Two integers $a,b\in\mathbb{Z}$ are coprime iff. there exist $u,v\in\mathbb{Z}$ such that

$$au + bv = 1.$$

Theorem (Bézout)

Let $a, b \in \mathbb{Z}$. There exist $u, v \in \mathbb{Z}$ such that

$$gcd(a, b) = au + bv.$$

Corollary

Two integers $a,b\in\mathbb{Z}$ are coprime iff. there exist $u,v\in\mathbb{Z}$ such that

$$au + bv = 1.$$

Example

$$\gcd(n, n+1) = 1$$
 for all $n \in \mathbb{N}$, because $n \times (-1) + (n+1) \times 1 = 1$.

The fundamental theorem of arithmetic

Prime numbers

Definition (Prime number)

Let $p \in \mathbb{N}$. p is <u>prime</u> if it has exactly two positive divisors. In other words, this means $p \neq 1$ and for all $d \in \mathbb{N}$,

$$d \mid p \iff d = 1 \text{ or } p.$$

An integer $n \ge 2$ which is not prime is called composite.

Remark

 $n \ge 2$ is composite iff. there exist $a, b \in \mathbb{N}$ such that 1 < a, b < n and ab = n.

Remark

If
$$p \in \mathbb{N}$$
 is prime, then for all $n \in \mathbb{Z}$,
 $gcd(p, n) = \begin{cases} 1, & \text{if } p \nmid n, \\ p, & \text{if } p \mid n. \end{cases}$

Lemma (Gauss)

Let $a, b, c \in \mathbb{Z}$. If $a \mid bc$ and if gcd(a, b) = 1, then $a \mid c$.

Gauss's lemma

Lemma (Gauss)

Let
$$a, b, c \in \mathbb{Z}$$
. If $a \mid bc$ and if $gcd(a, b) = 1$, then $a \mid c$.

Counter-example

 $6 \mid 10 \times 3 \text{ but } 6 \nmid 10, 6 \nmid 3.$

Gauss's lemma

Lemma (Gauss)

Let
$$a, b, c \in \mathbb{Z}$$
. If $a \mid bc$ and if $gcd(a, b) = 1$, then $a \mid c$.

Proof.

gcd(a, b) = 1 so au + bv = 1 for some $u, v \in \mathbb{Z}$. Then

$$a \mid auc + bcv = (au + bv)c = c.$$

Lemma (Gauss)

Let $a, b, c \in \mathbb{Z}$. If $a \mid bc$ and if gcd(a, b) = 1, then $a \mid c$.

Corollary (Euclid's lemma)

Let $p \in \mathbb{N}$ be prime, and let $b, c \in \mathbb{Z}$. If $p \mid bc$, then $p \mid b$ or $p \mid c$.

Gauss's lemma

Lemma (Gauss)

Let
$$a, b, c \in \mathbb{Z}$$
. If $a \mid bc$ and if $gcd(a, b) = 1$, then $a \mid c$.

Counter-example

6 | 10 × 3 but 6 \nmid 10, 6 \nmid 3.

Corollary (Euclid's lemma)

Let $p \in \mathbb{N}$ be prime, and let $b, c \in \mathbb{Z}$. If $p \mid bc$, then $p \mid b$ or $p \mid c$.

Lemma (Gauss)

Let $a, b, c \in \mathbb{Z}$. If $a \mid bc$ and if gcd(a, b) = 1, then $a \mid c$.

Corollary (Euclid's lemma)

Let $p \in \mathbb{N}$ be prime, and let $b, c \in \mathbb{Z}$. If $p \mid bc$, then $p \mid b$ or $p \mid c$.

Proof.

If $p \mid b$, OK. Else, gcd(p, b) = 1; apply Gauss's lemma.

The fundamental theorem of arithmetic

Theorem

Every $n \in \mathbb{N}$ is a product of primes, and this decomposition is unique (up to re-ordering the factors).

Proof.

Existence: If *n* is prime, done. Else, n = ab with 1 < a, b < n; recurse.

Uniqueness: Suppose

 $n = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$

where the p_i and the q_i are prime. Then

 $p_1 \mid p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s;$ by applying Euclid's lemma repeatedly, we get $p_1 \mid q_j$ for some *j*. Since q_j is prime, this forces $p_1 = q_j$. Simplify by $p_1 = q_j$ and start over.

Practical factoring

Lemma

Let $n \in \mathbb{Z}_{\geq 2}$. If n is composite, there exists prime $p \leq \sqrt{n}$ such that $d \mid n$.

Proof.

As *n* is composite, n = ab with $2 \le a, b < n$. If we had $a, b > \sqrt{n}$, then $n = ab > \sqrt{n^2} = n$, absurd; So WLOG $a \le \sqrt{n}$. Consider a prime divisor of *a*.

Lemma

Let $n \in \mathbb{Z}_{\geq 2}$. If n is composite, there exists prime $p \leq \sqrt{n}$ such that $d \mid n$.

Example

Let n = 23. Then $\sqrt{n} < \sqrt{25} = 5$, so the primes $\leq \sqrt{n}$ are 2 and 3. Since neither divides n, n is prime.

Factoring integers

Lemma

Let $n \in \mathbb{Z}_{\geq 2}$. If n is composite, there exists prime $p \leq \sqrt{n}$ such that $d \mid n$.

Example

Let
$$n = 91$$
. For $p \in \{2, 3, 5\}$, we have $p \mid 90$, so $p \mid n \Longrightarrow p \mid (n - 90) = 1;$

absurd, thus $p \nmid n$.

However $91/7 = 13 \in \mathbb{Z}$, so we have a <u>partial</u> factorisation $n = 7 \times 13$.

If 7 or 13 were composite, they would have a prime factor $p \leq \sqrt{13} \leq 5$; but then $p \mid 7 \times 13 = n$, absurd. So 7 and 13 are prime, and we have completely factored n.

Valuations

Definition

Let $n \in \mathbb{Z}$, $n \neq 0$. Write it as $n = \pm \prod_i p_i^{a_i}$ where $a_i \in \mathbb{Z}_{\geq 0}$ and the p_i are distinct primes. Define $v_{p_i}(n) = a_i$.

Example

$$18 = 2^1 \times 3^2$$
, so $v_2(18) = 1$, $v_3(18) = 2$, $v_p(18) = 0$ for $p \ge 5$.

p-adic valuation

Definition

Let $n \in \mathbb{Z}$, $n \neq 0$. Write it as $n = \pm \prod_{i} p_{i}^{a_{i}}$ where $a_{i} \in \mathbb{Z}_{\geq 0}$ and the p_{i} are distinct primes. Define $v_{p_{i}}(n) = a_{i}$.

Convention: $v_p(0) = +\infty$.

Proposition

Let p be prime. Then for all $m, n \in \mathbb{Z}$,

•
$$v_p(mn) = v_p(m) + v_p(n)$$
,

• $v_p(m+n) \ge \min (v_p(m), v_p(n)).$

Proof.

Exercise!

Valuations vs. divisibility

Remark

Given integers m, n, \cdots , we may always write

$$m=\prod p_i^{a_i}, \quad n=\prod p_i^{b_i}, \cdots$$

with the same distinct primes p_i , by allowing some a_i, b_i, \cdots to be 0.

Lemma

Let $m = \prod_i p_i^{a_i}$, $n = \prod_i p_i^{b_i} \in \mathbb{N}$, with the p_i distinct primes. Then $m \mid n$ iff. $a_i \leq b_i$ for all i.

Example

$$6 = 2^{1}3^{1} \mid 60 = 2^{2}3^{1}5^{1}.$$

$$12 = 2^{2}3^{1} \nmid 18 = 2^{1}3^{2}.$$

Valuations vs. divisibility

Remark

Given integers m, n, \cdots , we may always write $m = \prod p_i^{a_i}, \quad n = \prod p_i^{b_i}, \cdots$ with the same distinct primes p_i , by allowing some a_i, b_i, \cdots

to be 0.

Lemma

Let $m = \prod_i p_i^{a_i}$, $n = \prod_i p_i^{b_i} \in \mathbb{N}$, with the p_i distinct primes. Then $m \mid n$ iff. $a_i \leq b_i$ for all i.

Proof.

Exercise!

Valuations vs. gcd and lcm

Theorem

Let
$$m = \prod_i p_i^{a_i}$$
, $n = \prod_i p_i^{b_i} \in \mathbb{N}$, with the p_i distinct primes.

Then
$$gcd(m,n) = \prod_{i} p_i^{\min(a_i,b_i)}, \quad lcm(m,n) = \prod_{i} p_i^{\max(a_i,b_i)}.$$

Valuations vs. gcd and lcm

Theorem

Let
$$m = \prod_i p_i^{a_i}$$
, $n = \prod_i p_i^{b_i} \in \mathbb{N}$, with the p_i distinct primes.

Then
$$gcd(m, n) = \prod_{i} p_i^{min(a_i, b_i)}, \quad lcm(m, n) = \prod_{i} p_i^{max(a_i, b_i)}.$$

Corollary

The common divisors of m and n are exactly the divisors of gcd(m, n). The common multiples of m and n are exactly the multiples of lcm(m, n).

Valuations vs. gcd and lcm

Theorem

Let
$$m = \prod_i p_i^{a_i}$$
, $n = \prod_i p_i^{b_i} \in \mathbb{N}$, with the p_i distinct primes.

Then
$$gcd(m, n) = \prod_{i} p_i^{min(a_i, b_i)}, \quad lcm(m, n) = \prod_{i} p_i^{max(a_i, b_i)}.$$

Corollary

$$gcd(m, n) lcm(m, n) = mn \quad \rightsquigarrow \quad lcm(m, n) = \frac{mn}{gcd(m, n)}.$$

Proof.

We always have
$$min(a, b) + max(a, b) = a + b$$
.

Multiplicative functions

Definition

Let $f : \mathbb{N} \longrightarrow \mathbb{C}$ be a function.

- f is strongly multiplicative if f(mn) = f(m)f(n) for all $m, n \in \mathbb{N}$.
- f is (weakly) <u>multiplicative</u> if f(mn) = f(m)f(n) for all $m, n \in \mathbb{N}$ such that gcd(m, n) = 1.

We will see examples later!

Lemma

Let
$$x \in \mathbb{C}$$
, $x \neq 1$; and let $n \in \mathbb{N}$. Then

$$1 + x + x^2 + x^3 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}.$$

Remark

If
$$x = 1$$
, what is $1 + x + x^2 + x^3 + \cdots + x^n$?

And what is
$$\lim_{x\to 1} \frac{x^{n+1}-1}{x-1}$$
?

Definition

For
$$n \in \mathbb{N}$$
 and $k \in \mathbb{C}$, let $\sigma_k(n) = \sum_{\substack{d|n \\ d>0}} d^k$.

Example

•
$$\sigma_2(12) = 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 12^2 = 210.$$

- $\sigma_1(n) = \text{sum of positive divisors of } n$.
- $\sigma_0(n) =$ number of positive divisors of n.

Sums of powers of divisors

Definition

For
$$n \in \mathbb{N}$$
 and $k \in \mathbb{C}$, let $\sigma_k(n) = \sum_{\substack{d \mid n \\ d > 0}} d^k$.

Theorem

Let $n = \prod_i p_i^{a_i} \in \mathbb{N}$, with the p_i distinct primes. Then

$$\sigma_0(n) = \prod_i (a_i+1), \; ext{and}$$

$$\sigma_k(\textit{n}) = \prod_i rac{p_i^{k(a_i+1)}-1}{p_i^k-1} \, \, \textit{for} \, k
eq 0.$$

Proof.

The positive divisors of $n = \prod_{i=1}^{r} p_i^{a_i}$ are the $\prod_{i=1}^{r} p_i^{b_i}$ for all combinations of the b_i such that $0 \le b_i \le a_i$ for all *i*. Thus for each *i*, there are $a_i + 1$ choices for b_i , hence the formula for $\sigma_0(n)$.

Sums of powers of divisors

Proof.

Similarly, for
$$k \neq 0$$
, the k-th power of these divisors are
the $\left(\prod_{i} p_{i}^{b_{i}}\right)^{k} = \prod_{i=1}^{r} p_{i}^{kb_{i}}$, so
 $\sigma_{k}(n) = \sum_{\substack{0 \leq b_{1} \leq a_{1} \\ 0 \leq b_{r} \leq a_{r}}} p_{1}^{kb_{1}} p_{2}^{kb_{2}} \cdots p_{r}^{kb_{r}}$
 $= \sum_{b_{1}=0}^{a_{1}} \sum_{b_{2}=0}^{a_{2}} \cdots \sum_{b_{r}=0}^{a_{r}} p_{1}^{kb_{1}} p_{2}^{kb_{2}} \cdots p_{r}^{kb_{r}}$
 $= \left(\sum_{b_{1}=0}^{a_{1}} p_{1}^{kb_{1}}\right) \left(\sum_{b_{2}=0}^{a_{2}} p_{2}^{kb_{2}}\right) \cdots \left(\sum_{b_{r}=0}^{a_{r}} p_{r}^{kb_{r}}\right)$
 $= \prod_{i=1}^{r} \sum_{b_{i}=0}^{a_{i}} p_{i}^{kb_{i}} = \prod_{i=1}^{r} \frac{p_{i}^{k(a_{i}+1)} - 1}{p_{i}^{k} - 1}.$

Corollary

The σ_k are weakly multiplicative.

Proof.

Let $m, n \in \mathbb{N}$ be coprime. Then $m = \prod p_i^{a_i}$, $n = \prod q_j^{b_j}$ with the p_i distinct from the q_j .

The Diophantine equation ax + by = c

Fix integers $a, b, c \in \mathbb{Z}$. We want to solve

 $ax + by = c, \quad x, y \in \mathbb{Z}.$

Fix integers $a, b, c \in \mathbb{Z}$. We want to solve

$$ax + by = c, \quad x, y \in \mathbb{Z}.$$

Example

The equation

$$6x + 10y = 2021$$

has no solutions such that $x, y \in \mathbb{Z}$.

Fix integers $a, b, c \in \mathbb{Z}$. We want to solve

$$ax + by = c, \quad x, y \in \mathbb{Z}.$$

Lemma (Strong Bézout)

Let $a, b \in \mathbb{Z}$. The integers of the form $ax + by (x, y \in \mathbb{Z})$ are <u>exactly</u> the multiples of gcd(a, b).

Proof.

Let g = gcd(a, b). Then $g \mid a$ and $g \mid b$, so $g \mid (ax + by)$ for all $x, y \in \mathbb{Z}$. Conversely, by Bézout, we can find $u, v \in \mathbb{Z}$ such that au + bv = g; then for all $k \in \mathbb{Z}$,

$$a(ku) + b(kv) = kg.$$

Lemma (Strong Bézout)

Let $a, b \in \mathbb{Z}$. The integers of the form $ax + by (x, y \in \mathbb{Z})$ are <u>exactly</u> the multiples of gcd(a, b).

Proof.

Let g = gcd(a, b). Then $g \mid a$ and $g \mid b$, so $g \mid (ax + by)$ for all $x, y \in \mathbb{Z}$. Conversely, by Bézout, we can find $u, v \in \mathbb{Z}$ such that au + bv = g; then for all $k \in \mathbb{Z}$,

$$a(ku) + b(kv) = kg$$

Corollary

The Diophantine equation ax + by = c has solutions iff. $gcd(a, b) \mid c$.

Lemma

Let $a, b \in \mathbb{Z}$ not both zero, and let g = gcd(a, b). Then the integers a' = a/g and b' = b/g are coprime.

Proof.

By Bézout, we can find $u, v \in \mathbb{Z}$ such that au + bv = g. Then a'u + b'v = 1, so gcd(a', b') = 1.

To solve ax + by = c with c a multiple of g = gcd(a, b), dividing by g yields

$$a'x + b'y = c'$$

where a' = a/g, b' = b/g, c' = c/g

 \rightsquigarrow WLOG, we can assume gcd(a, b) = 1.

Solving the case gcd(a, b) = 1

Let $a, b, c \in \mathbb{Z}$ be such that gcd(a, b) = 1. Let $x_0, y_0 \in \mathbb{Z}$ such that $ax_0 + by_0 = c$. Suppose $x, y \in \mathbb{Z}$ also satisfy ax + by = c. Then

$$ax_0 + bvy_0 = c = ax + by \quad \rightsquigarrow \quad a(x_0 - x) = b(y - y_0).$$

So $a \mid b(y - y_0) \xrightarrow[gcd(a,b)=1]{Gauss}_{gcd(a,b)=1} a \mid (y - y_0)$, whence $y = y_0 + ka$ for some $k \in \mathbb{Z}$. Similarly, $b \mid a(x_0 - x) \xrightarrow[gcd(a,b)=1]{Gauss}_{gcd(a,b)=1} b \mid (x_0 - x)$, whence $x = x_0 + lb$ for some $l \in \mathbb{Z}$. Besides, $a(x_0 - x) = b(y - y_0)$ implies l = -k.

Proposition

Let $a, b, c \in \mathbb{Z}$ be such that gcd(a, b) = 1. Then ax + by = c has infinitely many solutions. If x_0, y_0 is a solution, then the general solutions are $x = x_0 - kb$, $y = y_0 + ka$ ($k \in \mathbb{Z}$).

Proposition

Let $a, b, c \in \mathbb{Z}$ be such that gcd(a, b) = 1. Then ax + by = c has infinitely many solutions. If x_0, y_0 is a solution, then the general solutions are $x = x_0 - kb$, $y = y_0 + ka$ ($k \in \mathbb{Z}$).

Theorem

Let $a, b, c \in \mathbb{Z}$. The Diophantine equation ax + by = c has infinitely many solutions if gcd(a, b) | c, and none if $gcd(a, b) \nmid c$.

Example

We want to solve 6x + 10y = 2020.

 $g = \gcd(6, 10) = 2 \mid 2020 \iff$ infinitely many solutions.

Simplify by g: 3x + 5y = 1010.

Particular solution: Euclidean algorithm gives 3u + 5v = 1 for u = 2, $v = -1 \rightarrow can$ take $x_0 = 2020$, $y_0 = -1010$. Or directly spot $x_0 = 0$, $y_0 = 202$.

Either way, the solutions are

$$x = x_0 - 5k, \ y = y_0 + 3k, \ k \in \mathbb{Z}.$$

Complements on primes

Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

Proof.

Suppose not, and let p_1, \cdots, p_r be all the primes. Consider

$$N=p_1\cdots p_r+1,$$

and let $p \mid N$ be a prime divisor of N. Then p is one of the p_i , so

$$p \mid p_1 \cdots p_r,$$

thus

$$p\mid (N-p_1\cdots p_r)=1,$$

absurd.

Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

Example

 $p_1 = 3$ is prime. Prime divisor of $3 + 1 = 4 = 2 \times 2 \rightarrow$ new prime $p_2 = 2$. Prime divisor of $3 \times 2 + 1 = 7 \rightarrow$ new prime $p_3 = 7$. Prime divisor of $3 \times 2 \times 7 + 1 = 43 \rightarrow$ new prime $p_4 = 43$. Prime divisor of $3 \times 2 \times 7 \times 43 + 1 = 13 \times 139 \rightarrow$ new prime $p_5 = 13$ (or 139)...

Infinitely many primes

Theorem (Euclid)

There are infinitely many primes.

Example

 $p_1 = 3$ is prime. Prime divisor of $3 + 1 = 4 = 2 \times 2 \rightsquigarrow$ new prime $p_2 = 2$. Prime divisor of $3 \times 2 + 1 = 7 \rightsquigarrow$ new prime $p_3 = 7$. Prime divisor of $3 \times 2 \times 7 + 1 = 43 \rightsquigarrow$ new prime $p_4 = 43$. Prime divisor of $3 \times 2 \times 7 \times 43 + 1 = 13 \times 139 \rightsquigarrow$ new prime $p_5 = 13$ (or 139)...

Joke

Theorem: There are infinitely many composite numbers. Proof: Suppose not. Multiply all the composite numbers. **Do not add 1!**

The prime number theorem (NON-EXAMINABLE)

Theorem (1896)

For
$$x \in \mathbb{R}_{\geq 0}$$
, let $\pi(x) = \#\{p \text{ prime } | p \leq x\};$
for instance $\pi(8.2) = 4$. Then, as $x \to +\infty$,
 $\pi(x) \sim \frac{x}{\log x}.$
It follows that the n-th prime is $\sim n \log n$ as $n \to +\infty$.

Example

For
$$x = 10^{10}$$
, we have
 $\pi(10^{10}) = 455052511$ whereas $\frac{10^{10}}{\log 10^{10}} = 434294481.9032...$
The billionth prime is

 $p_{10^9} = 22801763489$ whereas $10^9 \log 10^9 = 20723265836.94...$

The prime number theorem (NON-EXAMINABLE)

Remark

A better estimate is

$$\pi(x) \sim \operatorname{Li}(x) \stackrel{\text{def}}{=} \int_2^x \frac{dt}{\log t}$$

The Riemann hypothesis about the complex zeroes of

$$\zeta(s) \stackrel{\mathsf{def}}{=} \sum_{n=1}^{+\infty} \frac{1}{n^s} \stackrel{\mathsf{FTA}}{=} \prod_{p \; \mathsf{prime}} \frac{1}{1 - p^{-s}}$$

implies

$$\pi(x) - \operatorname{Li}(x) = O(\sqrt{x} \log x).$$

Without it, we can still prove

$$\pi(x) - \operatorname{Li}(x) = O(x/e^{c\sqrt{\log x}})$$
 for some $c > 0$.